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Wave propagation in one-dimensional erodible-bed channels is discussed by using 
the shallow-water approximation for the fluid and a continuity equation for 
the bed. In  addition to gravity waves, a third wave, which gives the velocity 
of propagation of a bed disturbance, is found. An appropriate dimensional analy- 
sis yields the quasi-steady approximation for the complete shallow-water 
equations. 

The well-known linear stability analysis of free-surface flows is extended to 
include the erodibility of the bed. The critical Froude number Fc above which 
the free-surface of the fluid may become unstable is obtained. It is shown that 
erodibility increases the stability of the free surface, in qualitative agreement 
with previous experiments if q b  > qs, q b  and qs being respectively the contact- 
bed discharge and suspended-material discharge. The stability theory is also 
used to discuss coupled beds and surface waves. From it, five different configura- 
tions have been obtained: a sinusoidal wave pattern moving downstream, a 
transition zone and antidunes moving upstream, moving downstream and sta- 
tionary. These bed forms are in agreement with experimental results; hence 
shallow-water theory seems to give a reasonable explanation of the boundary 
instability. 

It is shown that the quasi-steady approximation and Kennedy’s (1963) 
stability analysis will be in agreement if (kh)2 < 1, where k is the wave number, 
and h is the depth of the water. When the phase shift 6 is introduced in the quasi- 
steady approximation, the five bed patterns derived from the full equations are 
found again. 

1. Introduction 
It is well known (e.g. Vanoni & Brooks 1957; Simons & Richardson 1961), 

that the boundary surface S,  that separates an erodible stream bed from the 
water flowing above may become unstable. As a consequence of this instability, 
different bed forms, sometimes coupled with surface waves, appear in natural 
streams and experimental flumes. The different bed-form domains can be classi- 
fied according to the flow regime into three categories. (a) Lower regime: ripples, 
‘incipient’ flat bed, ripples on dunes; all these waves move downstream. (p) 
Transition regime: wash-out dunes and flat bed. ( y )  Upper r6gime: flat bed; 

t Formerly: Instituto de CBlculo & Departmento de Meteorologia, Facultad de Ciencias 
Exactas y Naturales, Universidad de Buenos Aires. 
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antidunes moving upstream and downstream, stationary waves, chutes and 

Note that the incipient flat-bed zone has been reported by Chabert & Chauvin 
pools. 

(1963) when the particles of the bed satisfy the inequality 

d, = d,(gAp/pV2)* > 15 

(or d, > O.6mm for sands) where d, is the mean diameter of the bed material, 
p and u are the density and kinematic viscosity of the water, Ap = P b - P ,  Pa is 
the bed density. This zone was also observed by Liu (1957) and Maggiolo & 
Borghi (1965). The existence of this zone has been questioned by other authori- 
ties, e.g. Knoroz (1959). 

The mathematical analysis of the different waves that can propagate in 
erodible-bed channels has been previously discussed by means of two different 
approaches: the hydraulic and potential flow models. In  the former, due to 
Exner (1925), the motion of the fluid is described by the steady one-dimensional 
open-channel equation and the bed behaviour is represented by an empirical 
formula for the bed-load discharge and an equation of conservation of mass for 
the balance of the convected material. In  the latter, mainly due to Kennedy 
(1963), who successfully improved Anderson’s (1953) model, the fluid is treated 
as irrotational and inviscid and the influence of the bed is discussed using Exner’s 
approach. These two models have been also discussed by Reynolds (1965), who 
extended the potential model to two-dimensional wave problems. 

It will be shown in the present work how it is possible to give a reasonable 
explanation of bed-wave propagation and boundary instability in one-dimen- 
sional channel flows by means of the fully unsteady shallow-water approximation 
for the fluid and Exner’s equation for the bed. The three different models will 
be related in a way which makes possible the understanding of their different 
ranges of application. 

2. Shallow-water flows over erodible beds 
2.1. Basic equations 

Let us consider a free-surface flow moving over an erodible bed as shown in 
figure 1. It is supposed that the order of magnitude H of the depth h is much 
smaller than the order of magnitude L of the characteristic length in the horizontal 
direction. Hence, the flow may be considered as shallow. 

According to Friedrichs’ (1948) lowest-order approximation, the one-dimen- 
sional shallow-water equations of motion and conservation of mass read as 
follows : 

au - +u-+g-(h+e)+cb-h- au a UIUI = 0, 
at ax ax 

ah a 
- +- (uh) = 0, 
at ax 

where u is the mean velocity of the flow, h is the water depth and e is the local 
bed elevation measured from a fixed plane of reference. Note that a resistance 
term ebu)ul/h is added. 
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The dimensionless resistance coefficient cb is a function of the roughness of the 

(3) 
bed. It will be assumed that 

cb A(d,/h)", 

where n is a positive number and A is an empirical constant. When n = + and 
A = g/441 when g is measured in m/sec2, (3) is the well known Strickler's empirical 
formula, which is assumed valid when the bed configuration is flat; otherwise, 
the bed roughness will depend on the particular configuration of the bed (e.g. 
Knoroz 1959). Alternatively, resistance formulae based on the logarithmic 
distribution of velocity may also be used in the analysis. 

h 

T+?--b 
. .  . .  * . .  . . .  

I ' .  . . . -  . .  
. .  . .  . .  . 

C 

,% FIQURE 1. Symbols in shallow water theory. 

To complete the formulation of the theory, it is necessary to establish the 
erodible-bed equations. As no theory has yet been able to give a satisfactory 
explanation of the movement of sediment by flowing water, it will be assumed 
that the movement of bed particles that slide and roll along the bed can be 
represented by the bed-load (contact-bed discharge) &, in general a function of 
u and h. Several empirical formulae for pb are available; the formula 

(4) 

will be used in this work, as an example (cf. U.S. Waterways Exp. St. 1935). 
Here r = PcbUIuI is the shear stress transmitted by the fluid to the bed, x and r 
are empirical constants, 70 = gApd,r,* is the threshold (yield) shear stress of the 
bed material, and TO* is obtained from Shields's (1936) diagram. It will be as- 
sumed in this work that lqbl > 0; this implies that 171 > T~ in the formula (4). 
If the fluid also carries material in suspension, the suspended-bed-material dis- 
charge qs must be added to the bed-load discharge qb. 

When x = S/(gp*App) ( p  = porosity of bed material), and r = 3, (4) is the 
well known Meyer-Peter & Muller (1948) formula expressed in terms of volume 
of transported material (ab is given in m2/sec if T is given in ton/m2). 

1 qb = x( lT /  -rO)rSignT 

qb = ( I T [  
(1.1 2 T O ) ,  
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The equation of conservation of mass of the bed is given by 

Since qb = q b  (u, h),  this yields 
au ah ae 

ax at %(U, h)  + qz(", h)  - + -- = 0, ( 5 )  

where 

2.2.  Dimensionless equations 

Equations (l), (2) and ( 5 )  can be written in dimensionless form. Let u' = u / U ,  
h' = h / H ,  e' = e /H ,  x' = x/L,  t' = t / T ,  qi = &&, where U ,  H ,  L, T ,  Qb are charac- 
teristic dimensional constants so chosen that u', h', e' and their first derivatives 
with respect to x', t' are of order unity. For example, L could be a characteristic 
wavelength, T the period of an oscillation, U and H the mean velocity and 
depth at a characteristic section of the channel. The characteristic bed discharge 
Qb is so chosen that 

&a = X(CbpU2--o)r, 

where Cb is the roughness a t  the same section, i.e. cb = (H/h )n  Cb. An alternative 
expression for Qb can be obtained if we replace cbpu2  by gpHXo, where X,, is 
the slope of the characteristic flow. 

Substitution of the new variables into equations (l), (2), ( 5 )  yields three 
dimensionless equations which may be written in matrix form 

F2u' 1 F2T 0 0 

where A = [  h' u' "]. B = [  T 01,  

v' = [u',h',e'], 

d M  P;M 0 O T  

The dimensionless numbers F, T, J are respectively the Froude, Strouhal 
and friction numbers, and they also appear in the theory of shallow-water flows 
over a rough but rigid bed. On the other hand, the number M seems to be new in 
the literature and will be called erosion number, since it gives an estimate of the 
erosive capacity of the flow. This number can be related to the concentration of 
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total (bed+suspended) sediment discharge C,, which is defined as the ratio of 
the total weight of solids to the weight of the water-sediment mixture and is 
expressed in ppm by the formula 

The highest value of C,recorded in the extensive experimental work done a t  Colo- 
rado State University (Guy, Simons & Richardson 1966) is C, = 49,300ppm 
(table 7, run 31, chute-pool configuration), which corresponds to M M 0.03. 
Hence, it can be assumed that M < 1 in most cases. However, concentrations of 
over 600,000 ppm have been observed in streams carrying an appreciable amount 
of sediments at  supercritical flows characterized by violently breaking antidunes 
(chutes and pools), as reported by Nordin (1963). 

It will be convenient to define also a bed shear number 

and a modified erosion number M* = M/(l -H) .  These appear when (4) is 
used. It is assumed thoroughout that H < 1. 

2.3. Wave propagation 

It may be asked what happens when a gravity wave propagates over a bed 
constituted by a granular erodible material. To answer this question, let us 
determine whether the system (6) has real characteristics, i.e. curves in the (XI, t ’ ) -  
plane along which the first partial derivatives of the dependent variables are not 
uniquely determined. These characteristic curves are the solutions of the ordi- 
nary differential equations: 

T dx (”) = - (-) = si (i = 1,2,3); 
at’ i L at * 

si are the eigenvalues of the problem A - sB = 0, whose secular equation reads 

F2( T3s3 - ~u’TZS~) - Ts (4; M + h’ - u ’ ~ F ~ )  + (4; U’ - q6 h’) M = 0. (9) 

Equation (6) is hyperbolic if all three roots si are real and if there exist three 
linearly independent eigenvectors corresponding to  si. 

When 4; = q; = 0, the characteristics (8) are 

which are written in terms of the physical variables. 
Note that we have taken as characteristic parameters U ,  H the true velocity 

and depth U, h of the undisturbed steady and uniform flow, so that u’ = h’ = 1 
and Qb = qb. Hence the numbers F, T, J, M, H turn out to be respectively equal 
to u2/gh, LIuT, c,Lu2]gh2, qb/uh and ro/lrl. 

Fluid Mech. 33 7 
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The characteristics (10) give the velocity of propagation of a surface perturba- 
tion of the flow over a rigid bed. The third one appears because we have increased 
by one the order of the differential system. 

If we suppose that M < 1, all three roots si turn out to be real. They may most 
easily be determined by expanding in powers of M : 

si = s~”+Ms‘,~’+M~s~Z’+..., 

where the subscript i is used to number the roots and the superscript indicates 
the order of the approximation. The approximation of zeroth order is given by 
(lo), (11). Substituting this series into (9) and considering only the first-order 
approximation we can write the characteristics as follows: 

The first two characteristics give the velocity of propagation of a disturbance 
of the flow variables u, h (gravity wave) in an erodible-bed channel that can propa- 
gate downstream or upstream. As the additional terms due to the erodibility of 
the bed are of O(M), gravity waves propagate with a velocity that is practically 
unaffected by the erodible bed. This can be taken as a justification of the well 
known computational techniques used to evaluate floods and progressive waves 
in open channels and natural streams with the bottom considered as rigid. 

The characteristic (14) gives the velocity of propagation of a bed disturbance, 
and it is much smaller than the velocity v1 of the downstream gravity wave. In  
general, v1 is of the order of 1 m/sec, whereas v b  is of the order of 1 m/hour, i.e. 
both waves are practically decoupled. On the other hand, the wave velocity 
v2 may yield surface waves moving upstream or downstream that are coupled 
with bed waves, as may be observed from (13). This particular aspect will be 
discussed in Q 4.1. 

In  the vicinity of critical flow (F = 1), the wave velocities (13) and (14) in- 
crease rapidly without bounds. As the roots of (9) depend continuously on F, 
it  may be expected that real and bounded roots should exist when F2+ 1. 
Hence the approximations (12)-( 14) are no longer valid near critical flow, and 
their singularities can be attributed to the perturbation method. In  the neigh- 
bourhood of critical flow, these characteristics are 

~1 = ~ u + $ ( ~ ; + & M u + O ( M ~ ) ,  (15) 

(16) 212 = - v b  = - [*(a; - qi) MI* U + O(M), 

as obtained again by the perturbation method, using 

si = sP+ M&S\’) + MsL’) + , . . 
as the series expansion for si. 
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It is not difficult to show that if the roots of (9) are all real, then 

99 

gives an upper and lower bound for these roots. The approximate roots (12) to 
(16) satisfy these inequalities. 

When we choose for the bed discharge q b  the formula (4) ,  the bed wave velocity 
is given by 

M*u + O(M2). ( 2 + n ) r  
V b  = ~ 

1-F2 

2.4. Quasi-steady approximation M -g 1, T -g 1 

There is a possibility of transforming the shallow water equations (6) in such 
a way that gravity waves may be ‘filtered’ from them, so that only waves due 
to a bed disturbance appear. To discuss this possibility, let us consider a flow 
which has a characteristic time T 1, i.e. the period of the velocity field is very 
large. Therefore T 4 1 and we can disregard the partial derivatives with respect 
to t’ in the first two equations of system (6). Thus, the dimensionless velocity 
u’ = q’/h’ turns out to  be a function of h’, where q’ = q/ U H  is the dimensionless 
flow discharge. As M < 1, all terms of the last equation of (6) must be taken into 
account and the system (6) reduces to 

with dependent variables h‘ and e’. The number Z = T / M  = LH/Qb T expresses 
the ratio between the characteristic volume of the fluid that produces the erosion 
and the total volume of eroded material during the characteristic time T.  Z is of 
order unity or larger when T is sufficiently large. 

This is the quasi-steady approximationt of the shallow-water theory, which is 
valid only when the velocity u‘ and the depth h‘ vary so slowly in time that 
the fluid motion may be considered steady and M < 1. Unsteadiness is due only 
to the motion of the particles of the bed. Similar equations, written in dimensional 
form, have been previously used by Exner (1925), Reynolds (1965) and Gradow- 
czyk & Folguera (1965). Exner and Reynolds supposed, however, that qb  is a 
function only of the mean velocity u, i.e. q; = 0. 

The characteristics of the system (18), (19) are given by 

q f2  
~ l--FZ 0 1 

h‘3 

0 dx‘ dt‘ 

t Sometimes called ‘ hydraulic model’. 
7-2 
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i.e. 

= 0, i.e. t = constant, (21) 

since we have taken u' = h' = 1 as in $2.3. 
It can be observed that gravity waves have now disappeared; (20) turns out 

to be equal, up to terms of O(M2), to the characteristic (14) of the complete system 
(6). Therefore the quasi-steady equations can be considered as the 'filtered 
equations ' from the shallow-water theory. Bed disturbances propagate now 
with the first-order approximation of the bed-velocity (14) of the complete 
theory and we have eliminated the awkward gravity waves. Note that surface 
waves, moving with the bed wave velocity, may propagate in this model, as will 
be shown in @ 3  and 4.2. 

It may be expected that quasi-steady problems, e.g. the scouring around an 
obstacle, could be described by (18), (19). Gradowczyk & Folguera (1965) inte- 
grated these equations using a numerical procedure. The computations are in 
fairly good agreement with experimental data, which gives support to the prac- 
tical value of this theory. Our analysis justifies the quasi-steady approach in a 
more systematic manner, showing at  the same time its limitations. 

3. Linear stability 
Let us consider the influence of the erodibility of the bed on the stability of one- 

dimensional open-channel flows. It is well known that open-channel flows may 
become unstable when the Froude number is sufficiently high; in this case the 
steady flow changes into a discontinuous periodic wave pattern of roll waves. 
This phenomenon, observed by many researchers, e.g. Cornish (1934), was 
first discussed theoretically by Jeffreys (1925). Later on, Thomas (1940) and 
Dressler (1949) discussed this problem further. All these authors considered the 
bed as rigid and flat. From these studies a critical Froude number F, has been 
obtained which gives the limit of stable flows. When F > F,, the flow must become 
unstable and roll waves are to be expected. 

We shall investigate whether periodic waves of the form exp (ik) (x - vt) may 
propagate in free-surface flows over erodible beds using a linear stability analysis 
similar to that applied by Jeffreys. 

Let us consider a steady flow u' = h' = e' = const. which is perturbed in 
such a way that the new flow variables are u'+&u', h'+6h', e'+Se', where 
6u'(x', t') . . . are the dimensionless perturbations introduced to the main flow as 
shown in figure 2 .  As the perturbed motion must fulfil system (6), we substitute 
u' + 6u' . . . in it after neglecting terms O(Su'2) and higher. 

If the original equations of the undisturbed flow are subtracted from the 
equations of the perturbed flow, a homogeneous linear system of partial differen- 
tial equations in terms of the disturbances Su', dh', Se' is finally obtained, which 
may be written in the matrix form 

K ~ v '  = 0, (22) 
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a 

a - 
where K = [  ax’ a 

2rM* - 
ax! 

Sv‘ = [Su’, Sh’, Se‘]. 
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We take as characteristic parameters U ,  H the true values u, h of the steady and 
uniform flow (u’ = h’ = 1). 

X 

FIGURE 2. Symbols in stability analysis. 

Since (22) is a linear system, it can be reduced to the single equation 

(2+n)rM*--F2T3- a@ a$3 +(1+2rM* - F2)T7 as$ 
ax13 at’3 at axi2 

at12 at ax (23)  a3$ + 2 J T 2 - + ( 3 + n )  a24 JT-,, a2$ = 0, - 2F2T2 __ 
a t i 2  ax‘ 

where @ stands for Su’, Sh‘ or Se’. In  order to obtain the condition for stability, 
consider first a neutral disturbance of the form 

$ = $* exp { ik (x  - vt)}, ( 2 4 )  

where k = 2n/ l  is the wave-number of the perturbation, 1 is its wavelength, v 
its wave velocity and $* is the amplitude; both k and v are real. It is convenient 
to adopt k-l as the characteristic length, so that 

T = l/kuT, J = S,/kh. ( 2 5 )  

v = 4(3+n)zc, (26) 

When ( 2 4 )  is substituted in (23),  the imaginary part gives 

and the real part (with F = FJ for this critical disturbance) gives 
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It is observed from (26) that the wave velocity of the perturbation (24) is in- 
dependent of the bed material and is equal to the velocity of a flood wave moving 
over a rigid and flat bottom. When M* = 0, the expression (27) reduces to the 
form given by Jeffreys (1925) or Dressler & Pohle (1953) for a rigid-bed channel. 

It follows from (27) that the erodibility of the bed helps to stabilize the flow 
because the term due to the bed is positive. Since in this region H < 1, the formula 
(27) can be written as 

4 
(1 + T Z ) ~  [l - C(d,/h)3n'zJ 

FE z 

when the Meyer-Peter formula f&, z xIr1+3 is used. c is a positive constant. Thus, 
if the relative roughness dm/h is increased, so is F,. This is in agreement with 
experience; Forchheimer (1930) and Rouse (1938) explained that roll waves may 
be avoided by making the channel sufficiently rough. 

If we compare this result with experiments reported by Guy et al. (1966), it 
follows that our analysis is in agreement with the experimental data when the 
contact-bed discharge qb is larger than the suspended-material discharge q,, i.e. 
the transported material is mostly carriednear the bed. This occurs when the sand 
bed is sufficiently coarse, say d, > 0-45mm. On the other hand, when q8 % qb, 
i.e. very fine bed material, the suspended material seems to have a distabilizing 
effect on the flow since the observed values of Fc are even smaller than the one 
corresponding to the rigid bed condition. 

This conclusion might be expected since the formula (4) used in the 'analysis 
represents only the contact-bed discharge. Our model is not sufficiently refined to 
describe the more complex situation q, 9 qb because it would be necessary to 
know the distribution of velocity and the concentration of sediment along the 
y-axis in order to compute q,, and this is not determined by the simple model 
described here. 

To investigate the relationship that exists between the different wave ampli- 
tudes, it is assumed, as a special case of (24), that the neutral wave is of the form 

(28) 6v' = [ U*', H*', E*'] sin k(x - vt), 

where U*' = U*/u, H*'= H*/h, E*' = E*/h are the dimensionless real ampli- 
tudes. Substituting (28) into the second and third rows of (22), we obtain 

U u* = (d- 1) - (A*-E") ,  h 

where v' = vlu and A* = H*+ E* is the water surface amplitude shown in 
figure 2. These expressions are valid for F = F,. 

It follows, after substituting (26) into (30), that E* is proportional to M*A*. 
Since M* < 1 in most practical cases, it can be concluded that the bed is practic- 
ally unaffected by the wave (28). 

It may be of interest for further study to apply this stability analysis to the 
quasi-steady approximation discussed in 5 2.4. The corresponding equation for 
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the function q5 can be derived from ( 2 3 )  if we substitute in it M* = T/Z* where 
Z* = ( 1  - H) T/M, then divide (23 )  by T and finally set T = 0. This yields 

Pl P3 -9.2 

1 P2 -r1 

0 r2 P1 

(31 )  
a2q5 a3$5 

ax13 at! axi2 at ax + ( 3 + n )  JZ*,, = 0. ( 2  + n )  r ~ + ( 1  - F2) Z* ___ 

> 0,  

A non-vanishing neutral perturbation of the form (24 )  or (28 )  can only propa- 
gate if J = 0 and F =+ 1 .  The velocity of this perturbation turns out to be equal to 
the characteristic (20 )  of the quasi-steady equations. Reynolds (1965) obtained 
a similar result by means of a somewhat different approach. 

The relations between the quasi-steady wave amplitudes are given by 

(321, ( 3 3 )  
U u* = - -A* ,  E* = ( l - F - Z ) ) A * ,  

hF2 
as can be readily verified. 

In  this way we have obtained a neutral bed and surface wave moving with the 
same bed wave velocity vb. The significance of (32 )  and (33 )  will be discussed in 
$4.2 .  

To determine what happens when F F,., it  is necessary to consider not only 
disturbances periodic in time and space but all possible perturbations. As we 
are interested in disturbances that are periodic in space, let us assume that 

$5 = $* exp (at’/T - ikx’), (34 )  

where a is complex and k is real. A perturbation is stable if Re (a) < 0. 
The substitution of (34 )  into ( 2 3 )  yields the cubic 

a3 + (p1 + ir,) a2 + (p2 + ir,) a + (p3 + ir3) = 0, ( 3 5 )  

PI P3 0 -9-2 0 

0 Pl P3 0 -r2 

0 r2 0 P1 P3 

0 rl r3 1 PZ 

1 P2 0 -rl - r 3  

where 

> 0, 

M* 
r3 = - ( 2 + n ) r k 3 -  F2 

The roots of (35 )  are a,, a2, a3. Then Re (ai) < 0 (i = 1 ,  2, 3 )  if and only if 

and 
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4. Coupled one-dimensional bed and surface waves 
We have shown in $$ 2 and 3 how gravity waves may be affected by the erodi- 

bility of the bed; these waves do not represent any of the typical coupled bed 
and surface waves that appear in streams and flumes as described in $ 1. An appro- 
priate dimensional analysis will show how the linear stability analysis given in 
$ 3 can yield bed configurations similar to those reported by experimentalists 
and discussed analytically by Kennedy and Reynolds. 

4.1. Neutral waves 

Let us write the ratio T/J between numbers (25) as h/LS,, where L = uT is the 
distance travelled downstream by a particle of the flow moving with the velocity 
u after a time T. If T is sufficiently large for the channel depth h to be much smaller 
than the depth fall of the particle LX,, then T/ J < 1. Besides, if lc-1 is of order of 
L it follows that J % 1, and T is of order unity. Consequently, (23) can be reduced 
to a first order equation - 

all. 3 + n  all. 
- - f2U-= at ax 0 

which is written in terms of the true variables and with $ = aq5lat. Therefore the 
wave (36) travelling with velocity (26) can be considered as a ‘kinematic surface 
wave’ for a time T >> h/ztSo, if its wavelength I is sufficiently large.? Thus, the 
asymptotic behaviour of this wave is independent of the bed material. 

On the other hand, if we consider bed and surface waves whose wavelengths 
are so small that h is much larger than the depth fall So/k, it follows that J < 1. 
Consequently, it will be possible to neglect in (23) those terms which are multi- 
plied by J. 

This assumption will allow us to discuss coupled bed and surface waves by the 
method of $3. It is easy to show, after substituting (24) into (23) and setting 
J = 0, that the only neutral waves that can propagate in a one-dimensional 
flow turn out to be those waves which move with the velocities (12)-( 16) and fulfil 
the inequality lch & X,, i.e. relatively short waves. Longer waves should be 
practically decoupled from the bed. 

As we are interested in slow coupled waves, let us consider first neutral waves 
of the form (28) moving with velocity (14) or (16). Explicit relations between 
amplitudes E*, U* and A* are immediately obtained after substituting v’ = vb/u 
into (29), (30). It follows that for flows with F 4 1 

1 1 2r [ F2 F4 
E* = 1 - - + - M* + 0(Mz/F4) A*, 

+ O(M2/F2)] A*, 

(37) 

t Kinematic waves moving over rigid beds have been thoroughly discussed by Lighthill & 
Whitman (1955). ‘Kinematic bed waves’ have been considered by Gradowczyk, Maggiolo 
& Raggi (1967). 



Waves and instabilities in erodible channels 105 

and that for critical flows (F M 1) 

E* = - { [ 2 ( 2  + n) rM*]B + 2( 2 + n) rM* + O(M8))  A *, (39) 

- ( 4 + n ) r M * + O ( M # )  (40) 

Three different wave configurations, travelling with the velocity V b ,  are ob- 
tained from the above relations. 

(i) Subcritical flows (F < F,). The bed and surface waves move downstream 
and are out of phase; the flow accelerates over the crests of the bed wave and de- 
celerates over their troughs so that the total shear stresses 7+& transmitted 
by the flow to the bed are higher (lower) where the fluid accelerates (decelerates). 
This produces the downstream advance of the bed-wave-pattern because the bed 
particles are eroded from the crests and deposited on the troughs. This type of 
wave behaviour resembles the ripples or dunes of the lower regime (a). When the 
velocity of the flow is increased and all the flow parameters are kept constant, 
the bed amplitude E* decreases to E* = O [ ( M / F ) 2 ]  A* when Freaches the critical 
value F; = 1 - 2rM* and the bed configuration changes from a sinusoidal wave 
pattern into a practically flat bed. Thus, F ,  furnishes the upper limit to the sub- 
critical flow, 

(ii) Supercritical flows (F > 1). Both bed and surface waves are in phase and 
move upstream. The mechanism of subcritical waves (i) is reversed; the flow ac- 
celerates over the troughs and decelerates over their crests. The upstream ad- 
vance of this bed wave can also be explained because the bed particles are now 
eroded from the troughs where the shear stresses are the highest and deposited 
in the crests. This wave is similar to those antidunes moving upstream which 
appear in the upper regime (y) .  

(iii) Transition flow F, < F < 1. When the critical flow condition F = 1 
is achieved, E* is proportional to M**A* as is evident from (39), and the bed 
wave amplitude turns out to be much smaller than the water-wave-amplitude 
since M* < 1. The bed undulations are very small and they are described as 
‘wash-out dunes’. Hence, this zone is the transition regime (p) which moulds 
beds ranging from the typical of the lower regime (i) to those of the flat bed zone 
of the upper regime (ii). 

What happens if we consider relatively short waves kh % So travelling with 
velocities v, or v,? Since v, B 1Vbl in the domain of interest, the wave travelling 
with the velocity v1 is a downstream surface wave practically decoupled from the 
bed. When a wave travelling with the velocity v2 is considered, three situations 
of interest occur. 

(iv) Subcritical antidunes: it is possible to find a Froude number F, < 1 
that yields a velocity v2 = o(vb) < 0. This corresponds to bed and surface waves 
which are in phase and move upstream, i.e. antidunes in subcritical flows. 

(v) Downstream antidunes: similarly a Froude number F,  > 1 that yields 
a velocity v, = o(vb) > 0 can also be found. This leads to antidunes moving 
downstream in supercritical flow, which are in phase with the surface wave if 

0 < v2 < ( 2 + n ) r M * u / ( l + 2 r M * ) .  
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- u+6u 

vb 7 E* sin k ( x i -  1oblt) 

A* sink (x-xb t )  (iii) 

- u + 6 u  

X 

FIQURE 3. Different bed forms. (i) Sinusoidal wave pattern F < F,. (ii) Antidunes moving 
downstream 1 < F < F,. (iii) Transition regime Ft < F < 1. (iv) Stationary antidunes 

1 < F = F, < F,. 
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(vi) Stationary waves: when F = F3 > 1, it  is possible to form a wave as alinear 
combination of the preceding waves (ii), (v) which moves with velocity 

AV = v ~ - - v ~  = O(M2). 

This is practically a stationary wave, where E* M A*, U* M 0. Stationary bed 
and surface waves are in phase; the total shear stresses r+& M T are constant 
along the bed. This explains why these waves remain in their original position, 
because no net difference of eroded and deposited bed material can be produced 
by a constant distribution of shear stresses along the bed. 

All the above waves (i)-(vi) have been observed in experiments, e.g. Vanoni 
& Brooks (1957) and Guy, Simons & Richardson (1966). The bed configurations 
(i), (ii), (iii), (vi) are shown in figure 3. 

Flow 
Case regime 

(i) Lower 

(iii) Transition 

Froude 
number 

O < F < F ,  

F , < F < l  

F, < F < F,(F, < 1)  
F, < F < F,(F, > 1) 
1 < (F = F3) < F, 

Bed Movement of bed 
configuration features 

Sinusoidal Downstream 

Flat bed or 
pattern 

small 
undulations 

Antidunes 

Chutes and 
pools 

Upstream 
Upstream 
Downstream 
Stationary i - 

TABLE 1. Summary of bed configurations, which are valid for relatively 
short waves 1 % (kh)*, kh % So 

Finally, it is to be noticed that when F > F,, the free-surface may become un- 
stable as shown in § 3, therefore discontinuous surface waves as breaking waves, 
bores and hydraulic jumps may appear. This situation has been observed in 
experimental work and natural streams and named ' chutes and pools ' or violently 
breaking antidunes. The channel consists of a series of pools, in which the flow 
may be subcritical or supercritical, connected by steep chutes in which the flow 
is supercritical. The concentration of suspended material can be rather high for 
this configuration. 

These highly coupled waves must be discussed by non-linear methods, there- 
fore, the upper regime configurations (ii), (iv), (vi) are limited by the condition 
F < F,. No limiting condition of this type has been yet explicitly given. 

The various configurations derived from shallow-water theory are sum- 
marized in table 1. 

In  general, the analytical predictions are in agreement with waves observed 
in experimental flumes and natural streams, a t  least from a qualitative point of 
view, especially in the transition and upper regimes. However, this linear 
analysis does not take into account all aspects of the lower regime, where four 
bed configurations have been reported: ripples (d ,  < 0*6mm), incipient flat 
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beds (d, > 0.6mm), ripples on dunes, dunes. Our analysis gives one type of 
bed form: a sinusoidal wave pattern. 

If we apply the above linearized stability analysis to the quasi-steady approxi- 
mation and set J = Oin (23), only the configurations (i) and (ii) are again obtained 
for F + 1, as can be observed from (32), (33). It can. be concluded that the quasi- 
steady shallow-water approximation is not an appropriate model for the study of 
coupled bed and surface neutral waves. 

The above results as already stated have been obtained on the assumption 
H < 1. If H 2 1, the bed remains at rest. Since temperature variations modify 
the viscosity of the stream, this will change the value of 7:. This may help to 
explain why some rivers, at  similar discharges, have dunes in summer when the 
stream fluid is warm and less viscous and a flat bed in winter. 

4.2. Comparison between potential and shallow-water theory 

Let us relate our results to those obtained by Kennedy (1963). It is to be noted 
that his principal variables U ,  d, k, Ub, F, f ( x , t ) ,  A( t ) ,  q(x,t), a(t), GIB, n, x, t 
are respectively equal to our variables u, h, k, vb, F, 6a, A*(t), 6e, E*(t), q b ,  r ,  IC, t. 
Kennedy's formulae are expressed in the notation of this paper and the formula 
numbers followed by the letter K corresponds to his work, 

Potential flow analysis is based on the parameter D, which is a characteristic 
water depth, and is defined implicitly by? 

khF2 = tanhkD. (9K) 

When D - h 0 the bed configuration corresponds respectively to antidunes 
(waves moving upstream) or dunes (waves moving downstream), as it can be 
observed from the bed wave velocity for neutral waves (6 = 0) 

(21K) 
1-F2khtanhkhM,u 

v b  = -2rM"ukhcothkh --1 = 2r 
F2 

(f ) tanhkh 
kh 

and the relation between the bed and surface neutral amplitudes 

E* = [l- (khF2)-ltanhkh] coshIchA*. (16-w 

We will compare now the shallow-water and quasi-steady potential flow 
theories. If we assume that khF2 < 1, equation (9K) can be expanded into series 

(41 1 D = hF2{1+ O[(khF2)2]). 

Similarly, since F is of order unity or smaller, formulae (21K) and (16K) can 
be developed into series 

1 
v b  = 2 + O[(l~h)~]} rM*u, 

E* = {(1-FF-2)+O[(kh)2])A*. (43) 

t Reynolds (1965) has shown that it is not necessary to introduce D in the analysis; his 
expressions for (16K) and (21K) are, however, similar to those derived by Kennedy. 
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Hence the two quasi-steady theories yield the same neutral waves when 6 = 0 
and terms O[(kh)2] and higher are disregarded.? In  addition, the ratio of D / h  5 1 
is similar to the inequality F 2 5  1. When D + h(F2 --f l), vb --f 00, a result that 
seems to be a peculiarity of the two quasi-steady approximations. 

The singularities of the two quasi-steady theories are removed by the com- 
plete shallow-water theory because vb has the finite value (16) in critical flow. 

This comparison allows us to discuss the range of validity of the shallow- 
water theory and the potential theory. A lower bound given in $4.1 indicates that 
coupled bed and surface waves may appear when kh 9 X,; an upper bound 
which limits the applicability of shallow-water theory is 1 9 (kh)2. Therefore in- 
finitesimal coupled bed and surface waves may be described by shallow-water 
theory only if the inequalities 

1 9 (kh)2, kh 9 So (44) 

are satisfied, as indicated in table 1. 
The region bounded by (44) covers all the regimes (a), (p), (7) mentioned in 

$$1 and 4.1 with the exception of ripples, which are characterized by kh > 1. 
The potential theory may be used to describe coupled waves in the zone 

F-2 > kh, kh 9 X,. (45) 

The lower bound must be explicitly stated, because potential theory does not 
allow for long surface waves like kinematic surface waves; the upper bound is 
given by the formula (30K). According to Reynolds’s formula (19R), this upper 
bound should be coth (kh)/F2kh. 

A numerical comparison between the reduced bed-wave velocities and bed 
amplitudes of the two theories is shown in figure 4. The agreement is good when 
(kh)2 << 1. 

4.3. The growth of bed and surface waves 

Let us discuss the growth of a bed perturbation generated at  t = 0. The equation 
(23) may be appropriate for this study, which requires the integration of an initial- 
value problem with $(&, 0) given. Instead of following this general method, we 
assume that the perturbation vector (28) conserves its initial form but amplitudes 
U*(t) ,  H*(t) ,  E*(t)  are now functions o f t  to be determined. As we shall relate 
our results to Kennedy’s findings, we suppose that T < 1 and J < 1; the former 
is equivalent to the assumption used by Kennedy (1963, p. 526), who supposed 
that H*(t)  is a slowly varying function o f t ;  the latter is a basic hypothesis of 
potential flow theory. In  addition, the phase shift 6, which is the distance by 
which the local bed discharge lags behind the local velocity at the bed, will be 
introduced.$ Although no conclusive experimental result has shown the existence 
of such a lag, we use this mechanism as a free parameter that may take into ac- 
count those aspects of real motion which are not considered in the mathematical 
model. 

t The missing factor .n in (42) is due to the fact that Kennedy assumed that qa = qb(u). 
$ Note that the assumption M < 1 is implicitly used in this section so that the analysis 

corresponds to  the quasi-steady approximation of 3 2.4. 
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With these considerations, it follows that the amplitude 6e must satisfy the 
equation 

which is written in terms of the physical variables. The symbolism [ 1, means that 
the term between brackets is to  be evaluated a t  x. 

FIGURE 4. Comparison between the reduced wave velocities v$ = wb/(2+n)M*u and the 
bed wave amplitude ratio E*/A* of the quasi-steady potential and shallow-water theories, 
for different values of kh. The potential solutions are interrupted when the growth condition 
F2 = l / k h  is achieved. The line that corresponds to kh, = 0.1 is not drawn because it is 
practically coincident with the shallow water approximat,ion. - , quasi-steady shallow- 
water approximation ; -. -. - , kh = 0.5; ---, kh = 1 (quasi-steady potential theory). 

Setting 6e = E*(t)  sink (5-vt)  in (46), where v is the wave velocity, gives an 
ordinary differential equation for E*(t), the solution of which yields 

v = v, cos k6, 

E*(t) = E*(O) exp [ - ktv, sin k6]. 
(47) 

(48) 

Equations (47) and (48) are similar to Kennedy’s equations. If terms O[(kh)2] 
and smaller are disregarded, the factor F2 - 1 can be taken instead of D - h as the 
difference that determines whether bed and surface beds are in phase or not. 
Consequently, the five bed forms shown by Kennedy (1963, p. 529) in table 1 
can be obtained with this approach. These five bed forms are as follows: sinusoidal 
pattern moving downstream, flat beds and antidunes moving upstream, moving 
downstream and stationary. 
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These five configurations have already been discovered in $4.1 with the help 
of the shallow-water theory and without using 6. This suggests that 6 may be 
taken as a free-parameter that modifies some aspects of the quasi-steady approxi- 
mation in order to  approach the complete theory. 

This interpretation leads to the following question: is it possible to obtain the 
same wave configurations by means of a potential flow theory which does not 
assume quasi-steadiness and without the lag 6T The answer to this question may 
help to clear up the meaning of the parameter.t 

The author wishes to express his appreciation to Professor 0. J.Maggiolo of 
Montevideo (Uruguay) for his continuous and encouraging interest in this 
research, to his former associate Mr H. C. Folguera for fruitful discussions on 
some topics of $ 2 and to Dr H. K. Moffatt for his suggestions in the preparation of 
the final manuscript. 
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